Pulses and waves for a bistable nonlocal reaction-diffusion equation
نویسنده
چکیده
A bistable nonlocal reaction-diffusion equation is studied. Solutions in the form of simple and periodic travelling waves, single and multiple pulses are observed in numerical simulations. Successive transitions from simple waves to periodic waves and to stable pulses are described.
منابع مشابه
Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection.
A one-component bistable reaction-diffusion system with asymmetric nonlocal coupling is derived as a limiting case of a two-component activator-inhibitor reaction-diffusion model with differential advection. The effects of asymmetric nonlocal couplings in such a bistable reaction-diffusion system are then compared to the previously studied case of a system with symmetric nonlocal coupling. We c...
متن کاملBistable travelling waves for nonlocal reaction diffusion equations
We are concerned with travelling wave solutions arising in a reaction diffusion equation with bistable and nonlocal nonlinearity, for which the comparison principle does not hold. Stability of the equilibrium u ≡ 1 is not assumed. We construct a travelling wave solution connecting 0 to an unknown steady state, which is “above and away” from the intermediate equilibrium. For focusing kernels we ...
متن کاملCellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...
متن کاملTravelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait
We consider a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait. To sustain the possibility of invasion in the case where an underlying principal eigenvalue is negative, we investigate the existence of travelling wave solutions. We identify a minimal speed c∗ > 0, and prove the existence of waves when c ≥ c ∗ and the non exi...
متن کاملTravelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait
We consider a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait. To sustain the possibility of invasion in the case where an underlying principal eigenvalue is negative, we investigate the existence of travelling wave solutions. We identify a minimal speed c∗ > 0, and prove the existence of waves when c ≥ c∗ and the non existe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Math. Lett.
دوره 44 شماره
صفحات -
تاریخ انتشار 2015